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ABSTRACT

A systematic analysis of waveguides with metal in-
serts is presented. The method is based on a field
expansion in terms of the normal modes of the cor-
responding hollow waveguide without metal inserts.
The analysis leads to two main formulations: the ma-
trix formulation and the moment method formulation.
The matrix formulation is suitable for structures
with smooth metal inserts, which are free from
sharp edges, while the moment method is more suit-
able for metal sheets (e.g. strips and fins) or metal
inserts with sharp edges (e.g. ridges).

The method is applied to the analysis of ridged
waveguides and finlines, and leads to a generaliza-
tion of the widely used spectral domain technique
with respect that ridges, fins, and strips with finite
thickness can now equally be analyzed. Any existing
routine for the analysis of planar structures, which
is based on the spectral domain technique, can
slighily be modified in order to take the metalliza-
tion thickness into account.

INTRODUCTION

Most of the existing methods for the analysis of
guiding structures depend to a great extent on the
specific geometry of the individual structure. A
systematic method for the analysis of waveguides
with arbitrarily shaped cross section is strongly
recommended for computer-aided design and optlimi-
zation of complex microwave systems, in which dif-
ferent guiding structures are involved. Although
the finite element (or difference) method (e.g. [1],
[21) and the mode matching technique (e.g. [3],
{41} are capable of analyzing a wide variety of
structures, their storage and/or CPU time require-
ment represent severe restrictions on any economi-
cal CAD algorithm.

Many guiding stiructures simply have a rectangular
or a circular outer boundary and one {(or more)
touching or non-touching metal inserts which may
be either solid or sheet-like. Examples are striplines
and microstrips, finned waveguides and finlines,
ridged waveguides and multi-conductor transmission
lines. The electromagnetic field inside these struc~
tures can be expanded in terms of the eigenmodes
of the corresponding hollow rectangular or circular
waveguide such that the different expansions van-
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ish everywhere inside the metal inserts, This proce-
dure corresponds to the one-dimensional Fourier
series, in which a function which vanishes over a
certain interval can be expanded with respect to
the harmonics corresponding to a larger interval
which includs the smaller one.

In this paper, only homogeneously filled waveguides
will be considered. If the method presented here is,
however, combined with that presented in [5], inho-
mogeneously filled structures can equally be ana-
lyzed.

BASIC FORMULATION

Fig. 1 shows Lhe cross section of a waveguide with
a single, touching or non-touching metal insert. Ex-
tending the anlysis to multi-conductor transmission
lines is straight-forward. The direction of propaga-
tion, in which the structure is uniform, is taken
along the z-axis with corresponding propagation
constant 8, Let {h,,} and {e;,} be the complete
sets of axial magnetic and electric fields which cha-
racterize the TE and TM modes, respectively, of the
hollow waveguide (i.e., with the metal insert S, re-
moved)., h,, and e;, are real functions of the
transverse coordinates, which correspond to cutoff
wave numbers k,, and k,e, respectively, and satis-
fy the following orthogonality relations [6]:
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Because the structure is homogeneously filled (emp-
ty), it can support either TE or TM modes (the TEM
mode will be shown to be a TM mode with vanishing
cutoff wave number). The completeness property of
{h;s} and {e,,} can now be used in order to ex-
press the different field components in the original
structure (with the metal insert S, present) as ex—
pansions in terms of {h,,} and {e;,) which vanish
everywhere over S,.

Let e, h, e, and h, be the transverse electric,
transverse magnetic, axial electric, and axial mag-
netic field, respectively, wilh the z-dependence
e~ifz being dropped out, then
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where ¥, is the transverse del-operator and k is
the unit vector in axial direction.

A) TE modes

Because the tangential component of h has a step
discontinuity at C,, (¥4xh), which includes the
normal derivative of the tangential component, be-

haves as a dirac-delta function there. This dirac-
delta function is just the axial component of the
surface current at C,. (¥exh) can then vanish
everywhere over S except at C, and hence, h can-
not be expanded in terms of the curl-free set
{Zth;n} only. IL needs, in addition, the diver-
gence-free set (Vie,,xk}. The transverse compo-
nents h and e can then be expanded as
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Because the normal component of h is continuous
across Cg,, h, can be obtained from (jfh, = ¥4'h)
through a term-by-term differentiation of (3):
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The expansion coefficients aj"' and biP' are ob-

tained by making use of the orthogonality relations
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The integration is tlaken over (S-S,) because h

vanishes everywhere on S,. After some mathematical
manipulations, one obtains
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where k; is the cutoff wave number (kZ = ki - g2).
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B) TM modes

Because the tangential component of e is continuous
across Cg; (Vg¢xe) is free from dirac-delia functions
at C, and hence can vanish everywhere on S. e can
consequently be expanded in terms of the curl-free
set {Vie,,}. The transverse components e and h can
then be written as
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Because e, is continuous across C,, it can be ob-
tained from (-jf Vie; = k% e) through a term-by-
term integration of (7):
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Following a procedure similar to that for the TE
modes, the expansion coefficients a}®! are given by
(e} 1

a = — ﬁ e {n (9)
n 2 2 n -
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If ke = 0, e, = 0 and the TEM mode is obtained.

The quantity {(jfe,/k2) is, however, finite and plays
the same role as an electrostatic potential ¢,

. g] dt.

MATRIX FORMULATION

If the contour C, is smooth enough, i.e. free from
sharp edges, the different field componenis are re-
gular at C, and hence their series representations
converge rapidly. In this case, h, in (6) and (n'e)
in (9) can be replaced by twice their series repre-
sentations (4) and (7), respectively. The factor two
is due to the step discontinuities of h, and (n'e) at
Co. The series in (4) and (7) converge then to only
half the value of h, and (n°e), respectively, at C,.

Substituting (4) into (6), one arrives at the follow-
ing matrix eigenvalue equation for TE modes

{ (2] - [e"] ] [ a™ =k [a"] ™,

where [AM] is a diagonal matrix with elements k2,,
alh) is a column vector with elements a{P’). The ele~
ments of the square matrix [CP] are given by
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Substituting (7) into (8), the following matrix eigen—
value equation is obtained for TM modes:

[+ o] ot =t

where [A®] is a diagonal matrix with elements k2.,
a‘®) is a column vector with elements a}®}!., The ele-
ments of the square matrix [{C?] are now given by

(16)
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’v‘thzn] ds.
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The matrix eigenvalue equations (10) and (12) have
essentially doubly infinite order. For computational
purposes, the series in (3), (4), (7) and (8) must be
truncated, retaining a finite number of terms. The
matrices in (10) and (12) then become of finite
order,

MOMENT METHOD FORMULATION

If the contour C, is open (i.e., the metal insert is
infinitesimally thin) or has sharp edges, some field
components become singular at the edges. A large
number of terms must then be retained in the se-
ries representing these components, which results
in oversized matrices in (10) and (12). For these
cases, it is more suitable to expand h, and (n'e) at
C, in terms of basis functions, which individually
satisfy the edge conditions:
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Here I; and V; are expansion coefficients, and 9,
and ¢; are the basis functions. The expansion coef-
ficients are then determined by asking for a vani-
shing tangential electric field (or normal magnetic
field) at C,. If we test the vanishing fields at C,
by the same basis functions (Galerkin’s procedure)
one arrives at the following equations:
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for TM modes. I and V are column vectors with ele~-

ments I; and V;, respectively, and the elements of
the matnces [GPh], [Chel and [Cee] are given by
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The size of the characteristic matrix in (i5) and
{16) is equal to the number of basis functions used,
which can be greatly reduced if the basis functions
are properly chosen. On the other hand, each ma-
triz element is a doubly infinite sum, which must be
truncated if it is not expressible in closed form.
The truncation limit can, however, be put sufficien-
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tly high in order to correctly account for the sin-
gular behaviour of some field components at the
edges. In this procedure the truncation limit does
not influence Lhe size of the characteristic matrix.

The moment method formulation is basically the same
as that presented in {7}, except for the form of the
Green’s functions used. In [7], the singular parts
of the Green’s functions have been written explici-
tly as logarithmic functions. The singularity is then
removed by integration when the actual field is cal-
culated. In this formulation, the fields themselves
and not the Green’s functions are expressed. No
singularity is then included, and all series converge
uniformly.

APPLICATION TO RIDGED WAVEGUIDE
Consider the ridged waveguide shown in Fig, 2. For

simplicity, only TM modes with electric wall symme-
try at x = 0 will be analyzed:

e = sin ZZ . gin M,
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The normal electric field at the ridge is expanded
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Equation (18) can then be written as
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where V(1! and V(2! are column vectors with ele~
ments V') and V{2}, respeclively. The elements of
the Y-matrices are given by
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Referring to e.g. [8], it is easily seen that [Y{(11}]
is the characteristic matrix of a corresponding
structure with single infinitesimally thin strip at y
= ¥a which extends from x = 0 to x = x,, while
[Y{22)] is the characteristic matrix of a corres-
ponding structure with single strip at x = x4, which
extends from y = y, to y = b. The elements of
[Y{12)] are easily obtained from the elements of
[yl by replacing (a'sin Folm=vo)éntY)) by
(b'sin neoé jn'2?).

The formulation presented here consequently is a
generalization of the widely used spectral domain
technique with respect that the finite metallization
thickness is correctily taken into account. Any ex-
isting routine for the analysis of planar structures
which is based on the spectral domain technigque
can hence be modified according to the above state-
ments in order to extend its validity to the analysis
of finite metallization thickness.
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Fig. 1: Cross section of a waveguide with metal
insert.
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Fig. 2! Cross section of a ridged waveguide.
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