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ABSTRACT

A systematic analysis of waveguides with metal in-
serts is presented. The method is based on a field

expansion in terms of the normal modes of the cor-

responding hollow waveguide without metal inserts.

The analysia leads to two main formulations: the ma-

trix formulation and the moment method formulation,
The matrix formulation ia suitable for structures

with smooth metal inserts, which are free from
sharp edges, while the moment method is more suit-

able for metal sheets (e.g. strips and fins) or metal

inserts with sharp edges (e.g. ridges).

The method is applied to the analysis of ridged

waveguides and finlines, and leads to a generaliza-

tion of the widely used spectral domain technique

with respect that ridges, fins, and strips with finite

thickness can now equally be analyzed. Any existing

routine for the analysis of planer structures, which

is based on the spectral domain technique, can

slightly be modified in order to take the metalliza-

tion thickness into account.

INTRODUCTION

Most of the existing methods for the analysis of

guiding structures depend to a great extent on the

specific geometry of the individual structure. A

systematic method for the analysis of waveguides

with arbitrarily shaped cross section is strongly

recommended for computer-aided design and optimi-

zation of complex microwave systems, in which dif-

ferent guiding structures are involved, Although

the finite element (or difference) method (e.g. [ 1],

[21 ) and the mode matching technique (e.g. [31,
[41 ) are capable of analyzing a wide variety of

structures, their storage and/or CPU time require-

ment represent severe restrictions on any economi-

cal CAD algorithm.

Many guiding structures simply have a rectangular

or a circular outer boundary and one (or more)

touching or non-touching metal inserts which may

be either solid or sheet-like. Examples are striplines

and microstrips, finned waveguides and finlines,
ridged waveguides and multi-conductor transmission

lines. The electromagnetic field inside these struc-
tures can be expanded in terms of the eigenmodes

of the corresponding hollow rectangular or circular

waveguide such that the different expansions van-

ish everywhere inside the metal inserts. This proce-

dure corresponds to the one-dimensional Fourier

series, in which a function which vanishes over a

certain interval can be expanded with respect to

the harmonics mrresponding to a larger interval

which includs the smaller one.

In this paper, only homogeneously filled waveguides
will be considered. If the method presented here is,

however, combined with that presented in [51, inho-

mogeneously filled structures can equally be ana-

lyzed.

BASIC FORMULATION

Fig. 1 shows the cross section of a waveguide with

a single, touching or non-touching metal insert. Ex-

tending the anlysis to multi-conductor transmission

lines ia straight-forward. The direction of propaga-

tion, in which the structure is uniform, is taken

along the z-axis with corresponding propagation
constant B. Let {h=” ) and { ez” ) be the complete

acts of axial magnetic and electric fields which cha-

racterize the TE and TM modes, respectively, of the

hollow waveguide (i.e. with tho metal insert S ~ re-

moved ). h=” and ezn are real functions of the

transverse coordinates, which correspond to cutoff

wave numbers k” h and kn ~, respectively, and sati~i-

f y the following orthogonalit y relationa [61:

Jhh cIS = Pnh 6
s

zn zm mm’

Jee dS=P 6

s
zn zm ne run”

(1)

Because the structure is homogeneously filled (emp-

t y), it can sulpport either TE cw TM modes (the TEM

mode will be shown to be a TM mode with vanishing

cutoff wave number ). The completeness property of

{ hzn ) and {e,,”) can now be used in order to ex-
press the different field components in the original

structure (wit h the metal insert SO present) as ex-

pansions in terms of ( hzn } and {ezn ) which vanish

everywhere over SO.

Let g, ~, e, and h= be the transverse electric,

transverse magnetic, axial electric, and axial mag-
netic field,
e-J flz being

respectively, with the z-dependence
dropped out, then
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B) TM modes

Vxh=juz
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.
where ~t is the transverse del-operator and ~ is

the unit vector in axial direction,

A) TE modes

Because the tangential component. of ~ has a step

discontinuity at C!a, (YtX~), which includes the

normal derivative of the tangential component, be-
haves as a dirac-delta function there. This dirac-

delta function is just the axial component of the

surface current at Co. (~tx~) can then vanish
everywhere over S except at Co, and hence, k can-

not be expanded in terms of the curl–free set

{~th,n} only. It need:, in addition, the diver-
gence-free set {~teznx~). The transverse compo-
nents ~ and E can then be expanded as

[

,(h)
b

(h)

~ = -j@ @+h [

.

“m

1]

-’Z”’; e “’’””k ‘

Because the normal component of & ia continuous

across CO, h, can be obtained from (jj3hz = ~t.~)

through a term-by-term differentiation of (3):

(4)

The expansion coefficients a~h} and b~h) are ob-

tained by making use of the orthogonality relations

(l):

Because the tangential component of g is continuous
across CO, (~txg) is free from dirac-delta functions
at CO and hence can vanish everywhere on S. g can

consequently be expanded in terms of the curl-free

set {~tezn}. The transverse components g and ~ can

then be written as

(e)

‘ ‘%-tez”’
Because e= is continuous across CO, it can be ob-
tained from (-j@ Ytez = kt S) through a term-by-
term integration of (7):

(8)

Following a procedure similar to that for the TE

modes, the expansion coefficients a~e) are given by

Ifkc=O, ez= O and the TEM mode is obtained.
The quantity (jpez/k~) is, however, finite and plays

the same role as an electrostatic potential q.

MATRIX FORMULATION

If the contour Co is smooth enough, i.e. free from

sharp edges, the different field components are re-

gular at C ~ and hence their series representati~ns
converge rapidly. In this case, h= in (6) and (YS)

in (9) can be replaced by tm”ce their series repre-

sentations (4) and (7), respectively. The fact~r two

is due to the step discontinuitiea of h= and (KS) at

c The series in (4) and 17) converge then to only

h;; the value of h= and (wE), respectively, at Co.

Substituting (4) into (6), one arrives at the follow-

ing matrix eigenvalue equation for TE modes

The integration is taken over (S-S. ) because h

vanishes everywhere on SO. After some mathematica~

manipulations, one obtains

(h)
b=

1
n

k’
f

K K cone

where kc is the cutoff

h= [(; x i) “

wave number

where [Ah ] is a diagonal matrix with elements k~h,
{ h ] . ‘fhe ele-a ( h ) is a column vector with elements a“

;ents of the square matrix [Chl are given by

(11)

Substituting (7) into (9), the following matrix eigen-

value equation is obtained for TM modes:

[ be]+[~el] ~’e’‘vJe} (12)

where [Ae ] is a diagonal matrix with elements k~e,
Q( e j is a column vector with elements a$ e ). The ele-

ments of the square matrix [Ce] are now given by
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(13)

The matrix eigenvalue equationa (10) and (12) have

essentially doubly infinite order. For computational

purposes, the series in (3), (4), (7) and (8) must be

truncated, retaining a finite number of terms. The

matrices in (10) and (12) then become of finite

order.

MOMENT METHOD FORMULATION

If the contour CO is open (i.e. the metal insert is

infinitesimally thin ) or has sharp edges, some field
components become singular at the edges. A large

number of terms must then be retained in the se-

ries representing these components, which results

in oversized matrices in (10) and (12). For ~ these

cases, it is more suitable to expand h, and (Ng) at
CO in terms of basis functions, which individually

satisfy the edge conditions:

(14)

Here I i and V i are expansion coefficients, and q ~

and Gi are the basis functions. The expansion coef-

ficients are then determined by aeking for a vani-

shing tangential electric field (or normal magnetic

field ) at CO. If we test the vanishing fields at CO

by the same basis functions (Galerkin$s procedure)

one arrives at the following equations:

[k:F“]* [k: [4 - [Ah]]-’ F“] +

k“]’ F“] ] ~= 0

for TE modes, and

Peer [k: [4 - [Aell-l [~eel ~ = 0$

(15)

(16)

for TM modes. ~ and ~ are column vectors with ele-

ments I i and ~ i, respectively, and the elements of

the matrices [Chh] , [chel and [Ceel are given by

(17)

d’-”. ‘0

The size of the characteristic matrix in (15) and

(16) is equal to the number of basis functions used,

which can be greatly reduced if the basis functions

are properly chosen. On the other hand, each ma-
trix element i= a doubly infinite sum, which must be
truncated if it is not expressible in closed form.
The truncation limit can, however, be put sufficien-

tly high in order to correctly account for the sirl-

gular behaviour of some field components at the

edges. In thifj procedure the truncation limit does

not influence the size of the characteristic matrix.

The moment method formulation is basically the same
as that preaerited in [7], except for the form of the

Green’s functions used, In [7], the singular park

of the Green’n functions have been written explici-

tly as Iogarithlmic functions. The singularity is then

removed by integration when the actual field is cal-

culated. In this formulation, the fields themselves

and not the Green’s functions are expressed. No
singularity is then included, and all series converge

uniformly.

APPLICATION TO FUDGED WAVEGUIDE

Consider the ridged waveguide shown in Fig, 2. Fcw

simplicity, only TM modes with electric wall symme-

try at x = O will be analyzed:

e ❑ sin ~ . sin ~,
znm

“me = [:12+ l?]’
k’

P
ab.—.

nme 4
(18)

The normal electric field at the ridge is expanded

as

Equation

[1
~( 11)

[1
~(zlt

I;i
–e

Y
+f:y ’(x) Osxszfo,

go i
. (19)

0

+e =~V:2’f; 2’(y) yO <ysb.
x

Xo

16) can then be written as

[1Y
(12)

III
~(1)::0, (20)

[1
*(22)

y
(2)

where X( 1 J and Z( 2 } are column vectors with ele-

ments V ~1 ) an~d V ~2 }, respectively, The elements of

the Y-matrices are given by
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-(1) 2
Xo

t
.—

in J
$~’ )(x) sin ~ dx,

a.
b

-(2) 2
#

.-
im b J t~2)(Y) sin~dy,

Y.

‘(1) 2
Xo

‘$ ire=; J #

o
b

‘(2I 2
#

.-
in Jb$

Y.

Referring to

l}(x) sin 7mx dx,

2)(Y) sin a“(b-y) dy. (22)

.g. [81, it is easily seen that. [1’(*’)]
is the characteristic matrix of a corresponding

structure with single infinitesimally thin strip at y
= YO, which extends from x ❑ O to x ❑ XO, while
[y(ZZ)] is the characteristic ~af,rix of a corres-

ponding structure with single strip at x = x., which

extends from y = YO to y = b. The elements of
[Y t 12 ) ] are easily obtained from the ~lements of

[Y(”)] b~ replacing (a”sin =“(~-+~)”f j” { 1 } ) by

(b-sin n~o.f jn{z ~).

The formulation presented here consequently is a

generalization of the widely used spectral domain
technique with respect that the finite metallization

thickness is correctly taken into account. Any ex-

ieting routine for the analysis of planar structures

which is based on the spectral domain technique

can hence be modified according to the above state-

ments in order to extend ita validity to the analysis

of finite metellization thickness,
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Fig. 1:
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Cross section of a waveguide with metal

insert.

o Xo a

Fig. 2: Cross section of a ridged waveguide.
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